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In this paper we describe a new approach to solving the express shipment service net-
work design problem. Conventional polyhedral methods for network design and network

loading problems do not consistently solve instances of the planning problem we consider.
Under a restricted version of the problem, we transform conventional formulations to a new
formulation using what we term composite variables. By removing flow decisions as explicit
decisions, this extended formulation is cast purely in terms of the design elements. We estab-
lish that its linear programming relaxation gives stronger lower bounds than conventional
approaches. We apply this composite variable formulation approach to the UPS Next Day
Air delivery network and demonstrate potential annual cost savings in the hundreds of mil-
lions of dollars.

The U.S. package delivery industry plays an exceed-
ingly important role in our economy by providing
consistent and reliable delivery of a wide range of
goods. In 1999 it generated an estimated $52 billion
in revenue (see Standard and Poor’s 2000). The dom-
inant players in this industry are the United Par-
cel Service (UPS), which is the world’s largest pack-
age delivery company; Federal Express; and the U.S.
Postal Service. In this paper, we focus on express
shipment networks, specifically the planning and
design of overnight air networks, which are central
to providing time-critical expedited delivery service.
Improving the design yields significant savings, in
terms of both operating cost and the cost of owning
aircraft.

When formulated with conventional optimization
models, this is a network loading problem with side
constraints and is difficult to solve. The linear pro-
gramming relaxations for these formulations give
poor lower bounds, as they tend to select fractional
aircraft routes. Advances in the theory of solving
network design and network loading problems have

focused on strengthening the linear programming
relaxation and improving the tractability of formula-
tions. Unfortunately, the massive scale of our network
design problem and the inherent difficulty of con-
straints specific to Express Shipment Service Network
Design render these advances ineffective.

For these reasons, we introduce a new approach for
solving the express shipment service network design
problem. The foundation of this approach is the use
of composite variables. At their core, the composites are
combinations of aircraft routes that implicitly capture
package flows. Package flow variables are no longer
represented as separate decision variables. The overall
result is that the composites prevent many fractional
solutions from ever appearing in the LP relaxation.
Thus, a composite-based network design formulation
is better approximated by its LP relaxation and, there-
fore, easier to solve than a traditional network design
formulation.

Our overall objective is to develop and utilize a
practical solution methodology for network design.
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We make the following specific contributions:
• Develop a robust solution methodology for solv-

ing the Express Shipment Service Network Design
(ESSND) problem. Current polyhedral methods for
network design and network loading problems are
not effective on ESSND instances of realistic size.
The composite variable formulation provides stronger
bounds along with the flexibility to handle opera-
tional constraints that make conventional formula-
tions intractable. Computations with this model are
fast, making it a useful tool to support network
planners.

• Establish the theoretical foundation for this
method. We show the equivalence of the compos-
ite variable formulation with conventional models
and prove that using composite variables achieves
stronger lower bounds on the optimal integer
solution.

• Demonstrate the practical significance of the com-
posite variable approach on UPS’s Next Day Air net-
work. This instance could not be solved without the
new formulation. We demonstrate the potential to
save hundreds of millions of dollars in the annual cost
of owning and operating aircraft.

The structure of this paper is designed to high-
light both the theory and application of composite
variable formulations. We begin with a description
of express shipment operations and a discussion of
conventional network design formulations recently
applied to this problem. We then transform this con-
ventional formulation to the composite variable for-
mulation, using an intermediate model to establish
the equivalence of the (mixed) integer formulations
and to prove that the new formulation’s LP relaxation
provides a better lower bound on the optimal integer
solution. We conclude with a demonstration of this
modeling approach on realistic problem instances for
the United Parcel Service’s Next Day Air network.

1. Background
Express shipment carriers operate vast systems of air-
craft, trucks, sorting facilities, equipment, and per-
sonnel to move packages between customer locations.
The problem we consider involves only overnight air
operations. The carrier must determine which routes

to fly, which fleet types to assign to those routes,
and how to assign packages to those aircraft, all
in response to demand projections and operational
restrictions. In this section we describe the overnight
operations of an express shipment carrier, describe
and formulate the planning problem, and highlight
previous work in this and related areas.

1.1. Overview of Next Day Air Operations
The Next Day Air (NDA) network consists of gateway
locations that serve as points at which packages enter
(or exit) the air network; hub locations, where pack-
ages are sorted; and aircraft of multiple fleet types.
Consider the simple network shown in Figure 1. Pack-
ages arrive from ground centers (small squares) to gate-
ways, either on trucks or on small aircraft. Packages
enter the main air system through a gateway (e.g.,
node 1), are loaded onto an aircraft, and are trans-
ported to a hub (e.g., node H) no later than a speci-
fied time. Aircraft fly to the hub either directly or, as
in Figure 1, via a single intermediate gateway (e.g.,
node 2).

Upon arrival at the hub, packages are unloaded
from the aircraft, sorted, and loaded onto aircraft for
delivery to their destination gateway. During the sort-
ing process, the inbound planes remain at the hub
until they are loaded and ready to start their deliv-
ery routes. The aircraft then deliver packages to the
gateway locations, which sort the packages and send
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Figure 1 Example Next Day Air (NDA) Routes
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them to ground centers via truck or small aircraft.
From there, the packages are delivered to customers.

The aircraft inventory consists of multiple aircraft
types. Each aircraft type has operating characteristics
that determine the routes it can fly. These include
maximum flying range, effective speed, restrictions on
the locations at which it can land, and cargo capacity.
Landing restrictions include factors such as runway
length, physical space on the ramp, and noise restric-
tions at airports. There are limits on the number of
legs a plane can fly on a pickup or delivery route—
current UPS operations limit the number of legs to
two. In addition to the large jet aircraft, a fleet of small
aircraft provides a flexible source of excess capacity
used on an as-needed basis.

In this paper, we distinguish between routes, air-
craft routes, and paths. A route is an ordering of loca-
tions (i.e., either gateways or hubs) in the physical
network. All pickup routes end at a hub and all deliv-
ery routes begin at a hub. An aircraft route is the com-
bination of a specific aircraft (fleet) type and a route.
Not all fleet types can fly every route. Finally, a path
is used to denote package flows through the network.

The commodities that move through the network
are specified by gateway-to-hub demands on the
pickup side and by hub-to-gateway demands on the
delivery side. We only consider demands that are to
move through the air network; ground movement
of packages is external to the problem we consider.
Demand volume is specified in terms of packages or
in terms of containers, each of which holds hundreds
of packages.

To ensure appropriate customer service levels, time
boundaries are set for pickup and delivery. For each
gateway location, the carrier assigns level-of-service
(LOS) requirements in the form of an earliest pickup
time (EPT), which specifies the earliest time an aircraft
can depart from that location, and a latest delivery time
(LDT), which specifies the latest time at which pack-
ages can be delivered to the gateway. Timing require-
ments at hubs are specified by sort start times and
sort end times. Sort start represents the latest time at
which planes can arrive at the hub on a pickup route
and have their packages sorted. Sort end represents
the latest time at which packages may be loaded onto

outbound aircraft and, therefore, the earliest time at
which planes may depart on delivery routes.

Each aircraft incurs three types of cost. First, vari-
able operating cost is based on block hours flown (i.e.,
flying time plus taxi time) and includes components
such as fuel cost. Second, a fixed cycle cost is incurred
on each leg flown. Third, ownership cost is the daily
cost of owning the aircraft and is a fixed cost incurred
if an aircraft is used. The cost of handling and moving
packages is insignificant relative to the cost of own-
ing and operating the aircraft, and is assumed to be
zero. The cost components we include in the model
depend upon the overall objective. When minimiz-
ing total operating cost, we use the variable operating
cost and the cycle cost; when minimizing ownership
cost, we include only the fixed ownership cost; and
when minimizing total cost, we include all three cost
components.

1.2. Express Shipment Service Network
Design Formulation

We use the following sets to represent components of
the system: F is the set of fleet types, H is the set
of hubs, G is the set of gateways, Rf is the set of
possible routes that can be flown by fleet type f ∈
F , and � is the set of commodities to be flown. The
planning problem faced by express shipment carriers
is to design the minimum cost set of routes, aircraft
assignments to those routes, and package flows while
considering the following operational restrictions:

• limit the number of utilized aircraft (of each fleet
type) to the number available, nf , f ∈ F ;

• limit the number of aircraft landing at each hub
to the hub’s landing capacity, ah, h ∈H ;

• satisfy level-of-service (LOS) requirements for
pickup and delivery;

• arrive at and depart from hub locations accord-
ing to the sort start and end times;

• ensure that the number of each aircraft type end-
ing at a location equals the number that start there;
and

• satisfy the characteristics of each aircraft type,
including range, capacity, and flying speed.

The set of all possible aircraft movements defines
a time-space network, denoted by G= 	N�A. Define
the integer decision variable y

f
r to be the number of
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times we fly route r ∈ Rf with fleet type f ∈ F . The
cost of this aircraft route is denoted by d

f
r and its

capacity is denoted by u
f
r . We also define the deci-

sion variable xkij to be the amount of commodity k ∈�
flown on flight arc 	i� j ∈ A. We map each aircraft
route 	f � r to the arcs in A with the indicator �

fr
ij ,

which equals 1 when flight arc 	i� j is contained in
aircraft route 	f � r and 0 otherwise. We map the arc
corresponding the sort at hub h with the indicator �hij ,
and we map each route to its hub with the indicator
�rh. Associated with the start and end of each route is
the indicator �r

i , which equals 1 when i is the route’s
origin, −1 when i is the route’s destination, and 0
otherwise. Each commodity k ∈� has a total volume,
denoted by bk, to be moved from its origin, O	k, to
its destination, D	k.

The conventional ESSND formulation, introduced
in Kim et al. (1999) is given by:

min
∑
f∈F

∑
r∈Rf

dfr y
f
r

subject to

∑
k∈K

xkij ≤
∑
f∈F

∑
r∈Rf

�
fr
ij u

f
r y

f
r � 	i� j ∈A� (1)

∑
j�	i�j∈A

xkij −
∑

j�	j�i∈A
xkji

=



bk if i =O	k�

−bk if i =D	k� i ∈ N�k ∈��

0 otherwise�

(2)

∑
r∈Rf

�r
i y

f
r = 0� i ∈ N�f ∈ F� (3)

∑
r∈Rf

yfr ≤ nf � f ∈ F� (4)

∑
f∈F

∑
r∈Rf

�rhy
f
r ≤ ah� h ∈H� (5)

xkij ≥ 0� 	i� j ∈A�k ∈�� (6)

yfr ∈ �+� r ∈ Rf�f ∈ F � (7)

Forcing constraints (1) restrict the amount of flow on
any given arc to the capacity assigned to the arc. Flow

balance constraints (2) enforce conservation of flow
for each origin-destination commodity. Constraints (3)
are the aircraft balance constraints, which force the
number of aircraft of a given fleet type departing a
location on pickup routes to be offset by the same
number of aircraft of that fleet type landing at that
location on delivery routes. Additional constraints
enforce the number of available aircraft of each fleet type
(4), and landing capacities at the hubs (5). One addi-
tional constraint is the sorting capacity of each hub.
It is assumed that the given gateway-to-hub com-
modity assignments do not exceed the hubs’ sorting
capacities.

1.3. Literature Review
Conventional network design formulations can be
applied to instances of limited size. In such for-
mulations, we include two types of decision vari-
ables: those for the aircraft routing (i.e., design)
decisions and those for the package flow decisions.
These types of problems have been well studied in
the network design and network loading literature.
Magnanti and Wong (1984), Minoux (1989), Kim et al.
(1999), Gendron et al. (1999), and Crainic (2000) pro-
vide surveys of network design models and applica-
tions. Magnanti and Wong (1984) provide a unified
framework for describing network design problems
and deriving network design algorithms.

Recent research on solving network design prob-
lems has focused primarily on strengthening the LP
relaxation and on the development of approxima-
tion algorithms. Characterizing polyhedra and deriv-
ing valid inequalities for network design can be traced
to the development of valid inequalities for 0-1 pro-
gramming (see Wolsey 1975 and Crowder et al. 1983)
and the development of valid inequalities for fixed-
charge network problems (see Van Roy and Wolsey
1985 and Padberg et al. 1985). Applications to net-
work loading problems include Magnanti et al. (1993),
Magnanti and Mirchandani (1993), Pochet and Wolsey
(1995), Magnanti et al. (1995), Bienstock and Gün-
lük (1996), Bienstock et al. (1996), and Chopra et
al. (1998). Development of algorithms that embed
polyhedral elements include Bienstock and Günlük
(1995), Barahona (1995), Günlük (1999), and Stallaert
(2000). Approximation algorithms for network design
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include those developed in Goemans and Bertsi-
mas (1993), Agrawal et al. (1995), Goemans and
Williamson (1995), Williamson et al. (1995), Jain
(1998), Gabow et al. (1998), Hochbaum and Naor
(1996), Berstimas and Teo (1998), and Karger (1999).

For express shipment service network design, Kuby
and Gray (1993) develop network design models for
the case of Federal Express. Barnhart and Schneur
(1996) address the problem of designing a single-hub
overnight delivery network using column genera-
tion techniques to obtain near-optimal solutions. Kim
et al. (1999) apply branch-and-price-and-cut meth-
ods to the multihub express shipment problem using
a heuristic solution strategy. Grünert and Sebastian
(2000) identify planning tasks faced by postal and
express shipment companies and define correspond-
ing optimization models, and Büdenbender et al.
(2000) develop a hybrid tabu search/branch-and-
bound solution methodology for direct flight postal
delivery.

2. Composite Variables
and Reformulations

In conventional express shipment service network
design (ESSND) formulations, both aircraft routes and
package flows are modeled explicitly. Initial compu-
tational tests using models of the conventional form
could not routinely solve realistic instances of the
ESSND planning problem. The formulation’s linear
programming relaxation gives poor bounds on the
optimal integer solution. Two primary factors con-
tribute to these poor bounds. First, the forcing con-
straints (1) induce fractionality in the aircraft deci-
sion variables. This stems from the fact that rarely
does the package volume assigned to a plane utilize
all of the plane’s capacity. As such, the LP relaxation
chooses fractional planes rather than incur the cost
of unused capacity. Second, the aircraft balance con-
straints (3) amplify this problem. A fractional plane
that might otherwise be isolated to one route is con-
nected to the rest of the network via these con-
straints, which propagate fractionality throughout the
network.

To overcome this, we introduce a new formula-
tion approach that we show strengthens conventional

network design formulations. The formulation relies
on two key ideas. First, we capture multiple air-
craft routes with a single variable. Second, we build
package flows implicitly into the new variables. The
resulting composite variable represents a combination
of aircraft routes such that there exists a feasible flow
for all packages between some set of origins and
destinations.

We present the transformation using an intermedi-
ate formulation that (1) removes the explicit repre-
sentation of package flows, (2) provides an intuitive
method for understanding composite variable formu-
lations, and (3) allows us to establish the strength
of the composite variable formulation relative to the
original formulation.

2.1. A Restricted Version of ESSND
We initially assume that no ramp transfers are permit-
ted. This means that packages, once they are loaded
on a plane, stay on the plane until they reach the
hub for sorting (if a pickup route) or until they reach
their final destination (if a delivery route). No pack-
age exchanges between planes can occur at interme-
diate locations.

Under this assumption, we redefine the ESSND
package flow variables accordingly: We assign
demands to routes (versus arcs) and ensure that the
fleet types assigned to fly the routes have sufficient
capacity to carry the demands. We represent each com-
modity as a gateway-hub pair 	g�h ∈ �. The com-
modity set, �, is split into two disjoint sets, �P and
�D, corresponding to the pickup side and delivery
side, respectively. We define x

gh
r to be the amount of

	g�h demand assigned to route r . The set R	g�h

includes all routes that connect gateway g with hub h.
Subscripts divide R	g�h into RP	g�h and RD	g�h,
the set of pickup and delivery routes, respectively.
The parameter bghP is the demand to be moved from g

to h on the pickup side and b
gh
D is the demand to be

moved from h to g on the delivery side.
With package flows now assigned based on path

(route) flows, ESSND is rewritten as the following
(ESSND-R):

min d′y (8)
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subject to ∑
	g�h∈�

xghr −∑
f∈F

uf
r y

f
r ≤ 0� r ∈ R� (9)

∑
r∈RP	g�h

xghr = b
gh
P � 	g�h ∈�P� (10)

∑
r∈RD	g�h

xghr = b
gh
D � 	g�h ∈�D� (11)

By ≤ �� (12)

y
f
r ∈ �+� r ∈ Rf�f ∈ F� (13)

x
gh
r ≥ 0� r ∈ R� 	g�h ∈�� (14)

Constraints (9) are the forcing constraints. There is
one forcing constraint for each route, compared to
one forcing constraint for each flight arc in the time-
space network of the ESSND formulation. Constraints
(10) ensure that demand for each pickup commod-
ity is fully assigned to pickup routes. Similarly, con-
straints (11) ensure all delivery demands are fully
assigned to delivery routes. Constraints (12) are a con-
cise representation of the balance, landing, and plane
count constraints described in §1. Constraints (13) and
(14) represent aircraft route integrality and nonnegativ-
ity, respectively.

ESSND-R exploits the assumption that transferring
packages between aircraft is allowed only at the hubs.
The new formulation is equivalent to ESSND, as
are their linear programming relaxations. This new
formulation provides the starting point from which
we create a model consisting only of aircraft route
variables.

2.2. The Extreme Route Formulation
The “no-ramp-transfer” assumption implies that an
aircraft route will carry only the commodities cor-
responding to the gateways it visits and the hub at
which it terminates (for pickup routes) or originates
(for delivery routes). We now focus on characterizing
the available capacity an aircraft route may use to carry
these demands. For double-leg routes, there might be
an infinite number of ways to divide the available
capacity between the two gateway-hub commodity
demands. For single-leg routes, the entire capacity of
the aircraft route is available to move the demand
between the single gateway and hub. We will show
that we can characterize the use of a plane’s capacity

as a convex combination of the extreme uses of this
capacity.

For each aircraft route, we associate a set of extreme
routes, each of which specifies an extreme allocation
of the aircraft’s available capacity on that route. The
actual flow might be less than the available capacity.
For double-leg routes, we can give preference to the
route’s first location, loading the aircraft with as much
of the first location’s demand as possible and using
the excess capacity (if any) for the second location’s
demand. At the other extreme, we may give capacity
preference to the second location. Once again, we are
specifying an extreme allocation of the capacity and
are not specifying the actual flows.

To formalize the definition, consider an aircraft
route denoted by 	f � r visiting gateways i and j and
hub h (we’ll work strictly with the pickup routes, but
the same results apply to the delivery routes). The
available capacities for the first extreme route corre-
sponding to 	f � r are û1

ih for commodity 	i�h and û1
jh

for commodity 	j�h and are defined as follows:

û1
ih = min"bihP �u

f
r #�

û1
jh = min"uf

r − û1
ih� b

jh
P #�

We characterize the second extreme route using the
available capacities û2

jh for commodity 	j�h and û2
ih

for commodity 	i�h, which are defined as follows:

û2
jh = min"bjhP �u

f
r #�

û2
ih = min"uf

r − û2
jh� b

ih
P #�

It is possible that both extreme routes are charac-
terized by the same available capacities. This occurs
when the total capacity of the aircraft route exceeds
the total demand to be moved, that is u

f
r ≥ bihP + b

jh
P .

Then û1
ih = û2

ih = bihP and û1
jh = û2

jh = b
jh
P .

For single-leg routes, available capacity is allocated
to a single gateway-hub commodity, 	i�h, and we
have only a single extreme route. The available capac-
ity for this extreme route is defined as:

û1
ih = min"bihP �u

f
r #� (15)

Example 1. Consider the aircraft route shown in
Figure 2. The plane has a 10,000 package capac-
ity. The first gateway-hub commodity has a vol-
ume of 7,000 packages and the second gateway-hub
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i j h

7000=ih
Pb 9000=jh

Pb

i j h

7000=ih
Pb 9000=jh

Pb

Figure 2 Two-Leg Aircraft Route with 10,000-Package Capacity
(Example 1)

commodity has a volume of 9,000 packages. The
first extreme route picks up as much of the 	i�h

demand as possible and uses the remaining capacity
for the 	j�h demand. The available capacities associ-
ated with extreme route 1 are û1

ih = 7�000 and û1
jh =

3�000. The second extreme route gives preference to
the 	j�h demand. The available capacities associated
with extreme route 2 are û2

ih = 1�000 and û2
jh = 9�000.

Using the same set of extreme routes, any feasi-
ble package flow can be transported using the capac-
ity specified by a convex combination of the extreme
routes. For instance, if the aircraft picks up a par-
tial load, say 5,000 packages from each location, we
weight the first extreme point by $1 = 2

3 and the
second extreme point by $2 = 1

3 to yield an avail-
able capacity of 5,000 packages for each gateway-hub
commodity.

Finally, consider the case in which, using the same
extreme routes, the flow on the aircraft route does not
use the entire capacity of the aircraft. Say the aircraft
carries 2,000 packages from each location. Then there
is a range of multipliers that provide adequate capac-
ity: $1 ∈ % 1

6�1& and $2 = 1−$1.
In the extreme route formulation we are concerned

only with extreme points corresponding to maximum
flows because we use extreme routes to specify avail-
able capacity, not actual flows. The following result
relates extreme routes to actual flows on a given air-
craft route and is central to the development of the
extreme route formulation.

Proposition 1. A package flow is feasible on an air-
craft route 	f � r with capacity u

f
r if and only if it is

feasible on some convex combination of the extreme routes
of 	f � r.

Proof. (All arguments are presented in terms of
pickup routes and the results apply similarly to deliv-
ery routes.) We consider three cases. The first is for
single-leg routes, the second is for a double-leg route
with capacity that exceeds its gateway-hub demands,

and the third is for a double-leg route with gateway-
hub demands that exceed its capacity. For each case,
we show that for a given flow on an aircraft route
there is a convex combination of extreme routes for
which that flow is also feasible, and vice versa.

Consider the first case, in which 	f � r is a single-
leg route from i to h with flow x̂

fr
ih . We have a sin-

gle extreme route with û1
ih = min"bihP �u

f
r # and the total

flow on 	f � r cannot exceed demand bihP . Any flow
less than u

f
r cannot be greater than û1

ih and vice versa.
Consider the second case, in which 	f � r is a double-

leg route from i to j to h with bihP + b
jh
P ≤ u

f
r . There is

a single extreme route with capacities û1
ih = bihP and

û1
jh = b

jh
P . Given any feasible flow 	x̂

fr
ih � x̂

fr
jh  on this

double-leg route, we have x̂
fr
ih ≤ bihP = û1

ih and x̂
fr
jh ≤

b
jh
P = û1

jh and the flow is feasible with respect to the
extreme route. Given a flow 	x̄

fr
ih � x̄

fr
jh  that is feasible

with respect to the extreme route, we have x̄
fr
ih ≤ û1

ih

and x̄
fr
jh ≤ û1

jh. Summing, we get x̄frih + x̄
fr
jh ≤ û1

ih+ û1
jh ≤

u
f
r and the flow is feasible with respect to the aircraft

route, 	f � r.
The third case is when 	f � r is a double-leg route

from i to j to h when bihP + b
jh
P > u

f
r . Given a feasi-

ble flow on 	f � r, we have x̂
fr
ih + x̂

fr
jh ≤ u

f
r . The flow of

commodity 	i�h satisfies both x̂
fr
ih ≤ u

f
r and x̂

fr
ih ≤ bih

and it follows that x̂frih ≤ û1
ih. If û2

ih < x̂
fr
ih ≤ û1

ih, we can
find $1 and $2 such that

$1 +$2 =1�

û1
ih$1 + û2

ih$2 = x̂
fr
ih �

(16)

These multipliers also provide sufficient capacity to
cover the demand from j to h:

x̂
fr
jh ≤ uf

r − x̂
fr
ih

= uf
r − 	û1

ih$1 + û2
ih$2

= $1	u
f
r − û1

ih+$2	u
f
r − û2

ih

= $1û
1
jh+$2û

2
jh�

When x̂
fr
ih ≤ û2

ih, the second extreme route covers both
demands and we let $1 = 0 and $2 = 1.

Conversely (for the third case), assume we have
a flow, 	x̄frih � x̄

fr
jh , that is feasible with respect to a con-

vex combination of its extreme routes. That is, x̄frih ≤
û1
ih$1 + û2

ih$2 and x̄
fr
jh ≤ û1

jh$1 + û2
jh$2. Summing the two
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inequalities, we obtain

x̄
fr
ih + x̄

fr
jh ≤ 	û1

ih+ û1
jh$1 + 	û2

ih+ û2
jh$2

= uf
r 	$1 +$2= uf

r �

which yields the desired result. �

2.2.1. Formulation. We introduce additional nota-
tion to create a formulation based on extreme routes.
We define E to be the set of extreme routes as con-
structed above and we let we� e ∈ E, be the deci-
sion variables corresponding to the selection of each
extreme route. The set E consists of two disjoint sets,
EP and ED, corresponding to the pickup and delivery
extreme routes, respectively. We let �

fr
e indicate the

extreme routes associated with aircraft route 	f � r: It
takes a value of one for extreme routes that corre-
spond to the aircraft route and zero otherwise. For
any aircraft route 	f � r, the number of indicators with
nonzero value is at most two (because each route vis-
its at most two gateway locations and, therefore, the
number of extreme routes is at most two).

We require each aircraft route, constructed from
its extreme routes, to be integral. That is,

∑
e∈E �

fr
e we

must be integral for each aircraft route 	f � r, while
the decision variables, we, may have fractional values.
The number of decision variables in the new formu-
lation is 
E
, which is at most twice the number of
aircraft route decision variables in ESSND-R.

For the aircraft balance, landing, and plane count
constraints, the column associated with each extreme
route is identical to the corresponding aircraft route
column in ESSND-R. For the new formulation, we
denote these constraints by the matrix B̂ and the vec-
tor �. Similarly, we introduce a new cost vector d̂,
with each component identical to the cost of its corre-
sponding aircraft route (taken from the corresponding
component of the ESSND cost vector, d).

The formulation for the extreme route model (ER)
is given by:

min d̂′w (17)

subject to ∑
e∈EP

ûe
ghwe ≥ b

gh
P � 	g�h ∈�P� (18)

∑
e∈ED

ûe
ghwe ≥ b

gh
D � 	g�h ∈�D� (19)

B̂w ≤ �� (20)∑
e∈E

�fre we ∈ �+� r ∈ Rf�f ∈ F � (21)

Constraints (18) ensure that the total pickup capac-
ity made available for pickup commodity 	g�h
exceeds the demand for that commodity (referred to
as the pickup capacity-demand constraints). Similarly,
constraints (19) ensure that the total capacity made
available for delivery commodity 	g�h exceeds the
demand for that commodity (referred to as the deliv-
ery capacity-demand constraints). Constraints (20) are
the concise representation of the balance, landing, and
plane count constraints described earlier. Finally, con-
straints (21) ensure that each aircraft route constructed
from its extreme routes is selected in integer multi-
ples. Note that the decision variables we need not be
integral; only the resulting aircraft routes are integral.

2.2.2. Bounds and Strength. Consider any col-
umn of ER corresponding to an extreme route. The
coefficients for the cost (17) and the aircraft side con-
straints (20) are the same as entries for the correspond-
ing aircraft route column in ESSND-R. The differences
in the two columns are the coefficients for the pickup
capacity-demand constraints ((9) and (10) in ESSND-R
and (18) in ER) and delivery capacity-demand con-
straints ((9) and (11) in ESSND-R and (19) in ER).
Moreover, two extreme routes corresponding to the
same aircraft route differ only in their coefficients for
the capacity-demand constraints (18) and (19).

We establish a two-way mapping between solutions
of ER and solutions of ESSND-R as follows. Given a
solution to ER, we construct a set of aircraft routes via
the mapping:

yfr =∑
e∈E

�fre we� (22)

Given a solution to ESSND-R, Proposition 1 guar-
antees the existence of a convex combination of the
	f � r extreme routes to cover the flow specified by
the ESSND-R solution, and so the mapping (22) is two
way. It is straightforward to show that the two-way
mapping (22) preserves feasibility because By = B̂w.
The mapping also preserves the cost of the solution,
that is, d′y = d̂′w. Finally, the mapping also preserves
integrality of the solution.
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We use these observations to establish the follow-
ing relationship between the mixed integer program
ESSND-R and the integer program ER.

Proposition 2. The ESSND-R and ER are equivalent
(mixed) integer programming formulations.

Proof. (We argue using pickup routes and the
result follows similarly for delivery routes.) Given
that the mapping (22) preserves the feasibility, inte-
grality, and cost of the aircraft routes, establish-
ing equivalence requires proving that the mapping
ensures feasibility of package flows. Assume we are
given an ESSND-R solution 	x̂� ŷ. All package flows
are assigned to aircraft routes. For each aircraft route,
there exists a convex combination of extreme routes
that provides available capacity to cover the flow
assigned to that aircraft route (see Proposition 1).
Then for each gateway-hub demand, summing the
available capacities over all aircraft routes gives∑

e∈EP û
e
ghwe, which exceeds the total flow, bghP (from

constraint (10)). Thus, any feasible integer solution to
ESSND-R has a corresponding integer solution in ER
with the same cost.

Conversely, assume we are given a feasible ER solu-
tion, w̄, and we construct an aircraft route solution, ȳ,
to ESSND-R via (22). Proposition 1 implies the exis-
tence of a feasible flow on each aircraft route and,
therefore, a feasible flow on the set of routes speci-
fied by ȳ. The forcing constraints (9) and the demand
constraints (10) and (11) are, therefore, satisfied. More-
over, the mapping yields an ESSND-R solution with
the same cost as the ER solution. �

The mapping (22) can be applied to a feasible solu-
tion to ER’s linear programming relaxation to gen-
erate a feasible solution to ESSND-R’s LP relaxation
with the same cost. For the LP relaxation, the map-
ping is one way. Hence, it follows that:

Proposition 3. The linear programming relaxation of
ER is at least as strong as that of ESSND-R.

There are cases when the improvement in strength
is strict and the bound provided by the ER LP relax-
ation is tighter (strictly greater) than the bound pro-
vided by the ESSND-R LP relaxation. We present an
example of such a case in §2.5.

2.3. The Composite Variable Formulation
The ER formulation explicitly models aircraft routes
and ensures feasible package flows by providing suf-
ficient capacity through weighted combinations of
extreme routes. We take this one step further by com-
bining routes into composite variables, each of which
has sufficient capacity to carry some set of commodi-
ties. The combined routes might have excess capacity
in the same way that ER allocates excess capacity. It is
likely that further strengthening can occur by reduc-
ing coefficients in the composite variables for which
excess capacity exists. We motivate this reformulation
strategy via the mechanics demonstrated in the fol-
lowing example.
Example 2 (Composite Variable Example). Con-

sider the pickup network shown in Figure 3. We
must satisfy two gateway-hub demands. The first has
demand of bihP = 4�000 packages and the second has
b
jh
P = 6�000. We have one double-leg route (i.e., Route

1) from i to j to h and one single-leg route (i.e.,
Route 2) from j to h. We have two aircraft types, Type
1 with low capacity (5,000 packages) and Type 2 with
high capacity (8,000 packages).

For each double-leg route we have two extreme
routes (because their capacity does not exceed the
sum of the gateway-hub demands). For each of
the single-leg routes, we have one extreme route. The
capacity-demand constraints of ER are given by:

[
4�000 0
1�000 5�000

∣∣∣∣4�000 2�000
4�000 6�000

∣∣∣∣ 0
5�000

∣∣∣∣ 0
6�000

]
w

≥
[

4�000
6�000

]
�

i j h

4000=ih
Pb 6000=jh

Pb

50001
1 =u

80002
1 =u

50001
2 =u

80002
2 =u

i j h

4000=ih
Pb 6000=jh

Pb

50001
1 =u

80002
1 =u

50001
2 =u

80002
2 =u

Figure 3 Two-Gateway, One-Hub Network for the Composite Variable
Example
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where the first row corresponds to commodity 	i�h

and the second corresponds to commodity 	j�h.
Dividing each row by its right-hand side yields:[

1 0
1
6

5
6

∣∣∣∣ 1 1
2

2
3 1

∣∣∣∣ 0
5
6

∣∣∣∣ 0
1

]
w ≥

[
1
1

]
�

While Columns 2 and 5 appear to be identical,
the two routes originate at different gateways and
their aircraft balance coefficients differ. For extreme
routes corresponding to the same aircraft route (e.g.,
Columns 1 and 2), the entries for constraints other
than the capacity-demand constraints are identical.
The only difference in the two extreme routes is how
they allocate their capacity.

Next, we add columns 3 and 5 to obtain a column
with capacity-demand coefficients:[

1
9
6

]
�

This indicates that by selecting the composite consist-
ing of routes y2

1 and y1
2 we have the available capac-

ity to cover the entire demand of both commodities.
Finally, because the right-hand side of each row is 1,
we can reduce the second coefficient from 9

6 to 1 with-
out affecting the set of feasible integer solutions.

Adding a new composite column to the existing set
of decision variables does not change the optimal inte-
ger solution. Any feasible solution (including the opti-
mal solution) to ER remains feasible (optimal) after
we add composite variables. We obtain a stronger for-
mulation by removing the extreme routes and includ-
ing only composites.

2.3.1. Formulation. Before describing the com-
posite variable formulation, we offer the following
definitions.
Definition 1. A composite, denoted by c, is a col-

lection of distinct aircraft routes 	f � r� f ∈ F� r ∈ Rf .
Associated with c are the parameters ,fr

c , which indi-
cate the (integral) number of planes of fleet type f

that fly route r in composite c.
Definition 2. A composite, c, is a composite cover

of a set of gateway-hub commodities if there exists a
feasible flow in c for the entire demand of these com-
modities. We denote the covered set of commodities
as �c ⊂�.

Let � be the set of all composite covers. The sep-
aration of aircraft routes into pickup and delivery
routes allows us to divide the set of composites into
two distinct sets, �P and �D, for pickup and delivery,
respectively. We let �ghc = 1 for each commodity 	g�h
covered by composite c ∈ � (that is, 	g�h ∈ �c). We
denote the aircraft side constraint matrix as �B, with
each column of �B corresponding to a composite. Let-
ting �B	f � r denote the column of B corresponding to
aircraft route 	f � r, then �Bc =

∑
	f � r ,

fr
c B	f � r, and the

elements of �B are integral. The composite variable cost
vector is denoted by d̄; each component of d̄ is the
sum of the costs of each aircraft route contained in
the composite.

The composite variable formulation (CVF), is
defined as follows:

min d̄′ v (23)

subject to ∑
c∈�P

�ghc vc ≥ 1� 	g�h ∈�P� (24)

∑
c∈�D

�ghc vc ≥ 1� 	g�h ∈�D� (25)

�Bv ≤ �� (26)∑
c∈�

,fr
c vc ∈ �+� r ∈ Rf�f ∈ F � (27)

Constraints (24) and (25) are the covering constraints
associated with the pickup demands and delivery
demands, respectively. Constraints (26) represent the
combined aircraft balance, landing, and plane count
constraints described earlier. Finally, constraints (27)
ensure that the selection of each aircraft route is
integral.

2.3.2. Bounds and Strength. To relate CVF to
ER, the coefficients �

gh
c arise from the combination

of ER columns and coefficient rounding in the result-
ing column. Specifically, we take a linear combina-
tion of ER columns to yield integral aircraft routes
with known available capacities. The resulting air-
craft route columns are summed to give a new col-
umn with available capacity to cover some number of
gateway-hub demands. The indicator �

gh
c equals 1 if,

among the extreme routes that comprise c, the avail-
able capacity for commodity 	g�h exceeds the total
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demand for the commodity. It is set to zero otherwise.
In Example 2, we built a composite in which each air-
craft route was represented by a single extreme route.
In general, we allow each aircraft route to be specified
by a combination of its extreme routes and combined
with other such aircraft routes to form a composite.

The parameter ,fr
c (an integer) specifies the number

of times an aircraft route 	f � r is utilized in composite
c ∈ �. The composites selected by CVF must ensure
the integrality of the aircraft routes, which is why we
specify

∑
c∈� ,

fr
c vc to be integral. The more restric-

tive integrality requirement, vc ∈ �+, is not necessary
because integral aircraft routes may be generated by
taking fractions of composites.

To map a composite to its extreme routes, we let ,e
c

denote the usage of extreme route e in composite c,
where ,e

c can be fractional. We construct ,fr
c from the

extreme route usage by the relation ,
fr
c = ∑

e∈E �
fr
e ,e

c .
Any solution to CVF is mapped back to the ER solu-
tion by the relation:

we =
∑
c∈�

,e
cvc� (28)

We can also use ,e
c to link the composite’s available

capacity to a particular gateway-hub demand via the
relation: ∑

e∈EP
ûe
gh,

e
c ≥ �ghc b

gh
P � (29)

This says that if the extreme routes selected for a
composite provide enough capacity, we can treat the
demand as covered (i.e., �

gh
c = 1). We can also map

any CVF solution to an ESSND-R solution with the
relation:

yfr = ∑
c∈�

,fr
c vc� (30)

Proposition 4. CVF and ER are equivalent integer
programming formulations.

Proof. (Arguments are presented in terms of pickup
routes and apply similarly to the delivery side.) Given
a feasible ER solution, ŵ, we construct a CVF solu-
tion, consisting of two columns, as follows. We con-
struct one column in CVF, denoted by c∗, such that
�Bc∗ =

∑
e∈EP B̂eŵe, and where d̄c∗ is found similarly. For

the capacity-demand constraints (18), the composite

variable for c∗ is found by summing the extreme route
columns in ER, giving ūc∗

gh =
∑

e∈EP û
e
ghŵe ≥ b

gh
P for the

pickup capacity-demand constraints. So �
gh
c∗ = 1 for

all 	g�h ∈�P . Aircraft usage in c∗ is given by ,
fr
c∗ =∑

e∈EP �
fr
e ŵe, which is integral for all 	f � r. We simi-

larly define a second composite, c∗∗, for the delivery
side. Let v̂c∗ = 1 and v̂c∗∗ = 1, thus satisfying all con-
straints in CVF with the same cost as the ER solution.
Finally, ,fr

c∗ v̂c∗ +,
fr
c∗∗ v̂c∗∗ is integral due to the integral-

ity of ,fr
c∗ and ,

fr
c∗∗ , for all 	f � r.

Conversely, assume we are given a CVF solution, v̄.
We map v̄ to an ER solution, w̄, as in (28). Using the
capacity relation (29), the capacity assigned to com-
modity 	g�h ∈�P in ER is:∑

e∈EP
ûe
ghw̄e =

∑
e∈EP

∑
c∈�P

ûe
gh,

e
c v̄c

≥ ∑
c∈�P

v̄c�
gh
c b

gh
P

≥ b
gh
P �

and capacity-demand constraints (18) are satisfied.
The delivery capacity-demand constraints (19) are
similarly satisfied. The side constraints (20) in
ER are satisfied because B̂w̄ = ∑

e∈E
∑

c∈� B̂e,
e
c v̄c =∑

c∈��Bcv̄c = �Bv̄ = 0. We similarly establish that the
cost of the ER solution is the same as the cost of the
CVF solution. Integrality of the aircraft routes follows
directly from mapping (30), completing the proof. �

For a feasible solution to the LP relaxation of
CVF, we establish the following result directly from
the arguments used in proving the converse of
Proposition 4 by showing a feasible solution to CVF’s
LP relaxation has a corresponding feasible solution to
the ER LP relaxation with the same cost.

Proposition 5. The CVF LP relaxation is at least as
strong as that of ER.

Just as ER’s LP relaxation can be strictly greater
than that of ESSND-R, CVF’s LP relaxation can be
strictly greater than that of ER; we demonstrate this
later with two examples. The main result of this sec-
tion follows directly from Propositions 2 and 4 for
equivalence and Propositions 3 and 5 for strength.

Proposition 6. CVF is equivalent to ESSND-R, and
its LP relaxation is at least as strong as that of ESSND-R.
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In addition to the improved bounds, composites
provide a means for capturing difficult constraints
that would, when using conventional network design
methods, yield intractable models. One example of
such a constraint is the requirement to model com-
modities as integers, which is the case when we plan
container, rather than package, movements (a con-
tainer holds hundreds of packages). For the conven-
tional ESSND formulation, we would need to add
the requirement for all flow variables to be inte-
gral. With the composite variable formulation, enu-
merative procedures for constructing composites can
ensure integrality of flows; the formulation itself
remains unchanged. A second complicating constraint
exists when we relate aircraft capacity to the distance
flown. This type of range-payload trade-off is easily
modeled using composite variables—we simply use
the reduced capacity in the enumerative construction
of our composites. Such operating constraints affect
the composite construction procedures, but they do
not interfere with the structure of the composite vari-
able formulation. Moreover, they often reduce the size
of the composite variable set, which generally makes
the model easier to solve.

2.4. Two-Node Example
To illustrate how the formulation is strengthened as
we move from ESSND-R to CVF, we present a simple
two-node problem shown in Figure 4. The route from
gateway j to hub h can be flown by two aircraft types.
The first has a capacity of 5,000 packages and a cost
of 3. The second has a capacity of 8,000 packages and
a cost of 4. Our objective is to move all 6,000 packages
at minimum cost from the gateway to the hub.

j h6000=jh
Pb

3

5000
1
1

1
1

=

=

d

u

4

8000
2

1

2
1

=

=

d

u

Figure 4 Simple Two-Node Network Demonstrating Formulation
Strength

The ESSND-R formulation (excluding the landing,
plane count, and aircraft balance constraints)

min 3y1
1 +4y2

1

subject to

x
jh
1 −5�000y1

1 −8�000y2
1 ≤ 0�

x
jh
1 = 6�000�

y1
1�y

2
1 ∈ �+�

We could simplify this formulation but will keep it in
the ESSND form for the purpose of exposition. The
optimal solution to the LP relaxation can be found by
flowing all packages on the aircraft with the lowest
cost per unit of capacity. The solution to the LP relax-
ation is x

jh
1 = 6�000�y1

1 = 0, and y2
1 = 0�75, with a total

cost of 3. Note that the optimal integer solution is to
fly the Type 2 aircraft, or y2

1 = 1, with a cost of 4.
Next, we construct the ER formulation. With two

single-leg routes, the ER formulation has two extreme
routes, one for each aircraft route. The available
capacities of our two extreme routes are û1

jh =
min"bjhP �u

1
1#= 5�000 and û2

jh = min"bjhP �u
2
1#= 6�000. ER

is given by:
min 3w1 +4w2

subject to

5�000w1 +6�000w2 ≥ 6�000�

w1�w2 ∈ �+�

Using the same reasoning to solve ER’s LP relaxation
we find the optimal solution for the LP relaxation
to be w1 = 1�2 with a cost of 3.6, which is a better
(higher) bound on the optimal solution. The essence
of bound improvement is as follows. ESSND-R flew
a fractional aircraft to avoid being charged for the
unused capacity. By using extreme routes with capac-
ities that are lower than the capacities of the origi-
nal routes, ER reclaims part of the empty portion of
aircraft routes. That is, ER places total aircraft route
cost on the reduced capacity rather than on the actual
capacity. The ESSND-R fractional solution of 3

4 Type 2
aircraft cannot be represented in ER. The available
capacity for the Type 2 aircraft is û2

jh = 6�000. By select-
ing 3

4 of the Type 2 aircraft in ER, we would only be
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able to flow 4,500 packages, which is infeasible. Note
that the optimal integer solution to ER is w2 = 1 with
a total cost of 4.

We reformulate ER by scaling the capacity-demand
constraints:

min 3w1 +4w2

subject to

5
6w1 +1w2 ≥ 1�

w1�w2 ∈ �+�

The second extreme route is itself a composite because
it covers the entire demand. We call this Composite 1.
We build a second composite variable by doubling the
first column. We’ll call this Composite 2. The mapping
of each composite to aircraft routes 	,

fr
c  is given by

,1�1
1 = 0 and ,2�1

1 = 1 for Composite 1 and ,1�1
2 = 2 and

,2�1
2 = 0 for Composite 2. CVF is then:

min 4v1 +6v2

subject to

v1 +v2 ≥ 1�

v1,
1�1
1 +v2,

1�1
2 ∈ �+�

v1,
1�2
1 +v2,

1�2
2 ∈ �+�

The first integrality requirement reduces to 2v2 ∈ �+
and the second reduces to v1 ∈ �+. The optimal solu-
tion to the LP relaxation of CVF is v1 = 1 with a cost
of 4.0. The bound provided by CVF is tighter than the
bound provided by ER. In fact, the LP relaxation gives
the optimal integer solution. Recall that the fractional
solution to ER used 6

5 of Type 1 aircraft and no Type 2
aircraft. There is no corresponding feasible solution
in CVF, as any CVF solution that uses no Type 2 air-
craft is forced to use at least two Type 1 aircraft. This
accounts for CVF being stronger than ER.

To summarize this phenomenon, the presence of
excess capacity in aircraft routes increases the oppor-
tunity for fractionality in the solution to the ESSND-R
LP relaxation. By defining a model that uses extreme
routes, we are able to absorb part of the excess capac-
ity through coefficient reduction, thereby remov-
ing some of this fractionality. In ER, however, this
absorption is accomplished only on individual aircraft

routes with capacity exceeding one of its gateway-
hub demands. When individual aircraft routes do not
cover their gateway-hub demands, we create com-
posite variables to cover these demands. The pro-
cess of combining routes may, however, result in
excess capacity, which we can absorb by reducing the
capacity-demand coefficients, which then leads to the
covering constraints seen in CVF.

2.5. Single-Hub Example
To provide a sense of how the increased strength
affects the computational workload, we present a
small single-hub example. Without package flow
costs, there is no benefit in switching packages
between planes at an intermediate gateway location
when all packages are bound for the same hub. The
result is a case that satisfies the no-ramp-transfer
assumption and that provides a clear example of the
improvement in formulation strength as we move
from ESSND to CVF.

We consider a network with a single hub and five
gateway locations. Timing restrictions exist for pickup
and delivery at each of five gateways and for the hub
sort. We use three fleet types, ranging in capacity from
8,000 packages to 10,000 packages. One fleet type is
restricted to flying only single-leg routes. The solu-
tions for the three formulations were generated using
XPRESS-MP v.10 on a 300 Mhz Pentium PC.

The results are summarized in Table 1. These are
consistent with what we have established with respect
to the strength of the three models. As we move from
ESSND-R to CVF, we see the LP relaxations give bet-
ter approximations to the optimal integer solution. In
fact, for this example, the composite variable formula-
tion’s LP relaxation returns the optimal integer solu-
tion. In general, the LP relaxation is not guaranteed

Table 1 Solution Summary for ESSND-R, ER, and CVF Applied to
Single-Hub Example

ESSND-R ER CVF

LP relaxation objective value 10�663�037 23�154�683 28�474�014
IP objective value 28�474�014 28�474�014 28�474�014
Nodes in branch-and-bound

tree 781 111 1

Gap
(

z∗
IP

−z∗
LP

z∗
IP

)
0�6255 0�1868 0�0000
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to generate an integer solution at the root node. Yet,
the tighter bounds provided by the composite vari-
able formulation allow faster generation of very good
integer solutions via branch and bound and, in some
cases, the possibility of establishing the optimality of
a feasible integer solution.

2.6. Ramp Transfers
To this point, we have worked under the assumption
that ramp transfers cannot occur, yet the general def-
inition of composites includes the case when ramp
transfers are allowed. The presence of ramp trans-
fers has no effect on the strength results of CVF and
ESSND, but does cause an increase in the size of the
composite set. Under several key assumptions relat-
ing to the carrier’s operation, the number of com-
posite variables does not explode and enumerative
procedures can be used to construct the entire set of
composites.

Flow Assumption 1. Double-leg routes shall only be
used if they cover at least one of their gateway-hub
demands.

Under this assumption, a double-leg aircraft route
can only be represented by its actual extreme routes,
not convex combinations of its extreme routes. If the
total demand to be picked up on a double-leg route
exceeds the capacity, any (nontrivial) convex com-
bination of the extreme routes will allocate capac-
ity that covers neither of the gateway-hub demands.
If a double-leg route has only one extreme route
(i.e., the capacity of the aircraft route exceeds the
gateway-hub demand to be moved), there is no con-
vex combination to take. The same is true for single-
leg routes. Thus, we represent an aircraft route using
its extreme routes, not convex combinations of the
extreme routes.

The implication to ER is that we can replace the
requirement for integral aircraft routes (which are
constructed from extreme routes) with the require-
ment for integral extreme routes. That is, replace∑

e∈E �
fr
e we ∈ �+, for all 	f � r, with the requirement

we ∈ �+, for all e ∈ E∗. E∗ denotes the subset of
extreme routes that satisfy the operational assump-
tion. The only extreme routes not included in E∗ are
double-leg extreme routes where none of the allocated
capacities covers its gateway-hub demands. This hap-

pens when one of the gateway-hub demands exceeds
the entire capacity of the aircraft route. The implica-
tion to CVF is that composites can be built simply
using the extreme routes in E∗.

Flow Assumption 2. A gateway-hub demand that is
ramp transferred must be transferred in its entirety.

This implies that the gateway-hub commodity must
fit entirely on the first leg of the first aircraft involved
in the transfer and on the second leg of the second air-
craft involved in the transfer. When we build extreme
routes, the excess capacity on each leg of the route is
known. For each gateway location, we search the legs
with excess capacity to see if a given gateway-hub
demand can be transferred. Furthermore, we check all
flight legs to ensure that the proper timing exists to
make the transfer.

Flow Assumption 3. A gateway is only included on
routes to/from hubs in whose territory that gateway lies.

A hub’s territory is simply defined as the set of
locations which have demand going to or from the
hub. It follows that the number of planes involved in
a ramp transfer at any given gateway is limited to the
number of hubs to which that gateway is connected.

As a result of these assumptions, we construct
the complete set of composites as follows: First,
we identify the possible aircraft routes, considering
issues such as level-of-service requirements, speed
and range of aircraft, and hub sort hours of operation.
We then create the extreme routes for each aircraft
route. Those that cover their gateway-hub demands
are single-route composites. We use the remaining
extreme routes to construct multiple-route composites
without considering ramp transfers. Finally, we search
the set of composites to look for opportunities to ramp
transfer additional commodities using excess capacity
on the legs of those routes. The result is a “composite
of composites” tied together by the ramp transfer of
one or more commodities. This enumerative process
allows us to create an oracle of decision variables and
incorporate them into the formulation either a priori
or via explicit column generation.

Under the given operational assumptions, this is
the fully enumerated set of combined aircraft routes.
Because we include all possible combinations in the
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composite set, we can change the integrality require-
ment in CVF from enforcing the selection of integer
aircraft routes to enforcing integer composites. That
is, we change the requirement

∑
c∈� ,

fr
c vc ∈ �+ for all

r ∈ Rf�f ∈ F to the requirement vc ∈ �+ for all c ∈
�. In addition, the composite variable formulation
actually benefits from the complexity of this planning
problem, specifically from the aircraft capacity limita-
tions, the timing of aircraft routes, and the operational
restrictions on package flows. While these additional
restrictions make the enumerative procedures more
complicated, they make the composite variable for-
mulation easier to solve because the number of com-
posite variables is reduced.

The results pertaining to formulation strength
derived under the “no-ramp-transfer” assumption
still apply. Any solution to CVF uses aircraft routes
that satisfy the landing, plane count, and aircraft bal-
ance constraints. They cover all demands with their
capacity because each composite covers some set of
commodities and because the covering constraints
ensure that all commodities are covered. Thus, there
exists a corresponding solution in ESSND using the
same aircraft routes and having the same cost. Like-
wise, a fractional solution to CVF satisfies all con-
straints and there exists a corresponding fractional
ESSND solution. Finally, any integral solution to
ESSND that satisfies the constraints and the flow
assumptions is easily mapped into a set of compos-
ites that cover all commodity demands. As a result,
CVF is at least as strong as ESSND. In practice, this is
typically a strict improvement in strength.

3. The Case of the United
Parcel Service

The CVF model was designed to support planning
function at the United Parcel Service (UPS), with three
groups of planners and analysts that will use the
model. First, the long-range planners develop network
plans for periods of 2–10 years in the future to deter-
mine what assets will be needed to operate such a
system. Network planners work on current year plans
and adjust existing plans to accommodate actual or
anticipated changes in the system. Peak planners focus

on the network plan to enable operations during the
peak retail season of November and December.

We apply CVF to the Next Day Air network of
UPS. The air network consists of 101 locations, seven
of which are hubs. The carrier’s aircraft inventory
includes seven aircraft types and 160 total aircraft.
Demand consists of a nightly volume of 2,250 con-
tainers carrying 926,268 packages on the pickup side
and 2,288 containers carrying 967,172 packages on the
delivery side (planners typically work with contain-
ers as they provide a more realistic characterization of
the demand’s footprint on an aircraft). The objective
is to minimize operating cost, which depends upon
fleet type and consists of the cycle cost incurred for
each leg flown and the variable operating cost that
depends on the duration of a route. All computations
were performed on an HP9000 Model D370 using
HP’s ANSI C/C++ compiler with calls to the ILOG
CPLEX 6.5 Callable Library (see ILOG 1999).

We first examine the effect of the complexity of
ramp transfer composites on solution quality and run
time. Recall that for each gateway-hub pair 	g�h

involved in a ramp transfer, the entire 	g�h demand
is assigned to a single aircraft on the first leg and a
single aircraft on the second leg. This follows from the
planning consideration that if gateway-hub volume is
to be ramp transferred it cannot be split, neither at its
origin nor at its ramp transfer gateway.

Planners at UPS place an upper limit on the amount
of an inbound aircraft’s capacity that can be used for
ramp transfer volume. Standard planning procedures
place this limit at 50% because of the time associated
with unloading the aircraft. Increasing this limit pro-
vides more opportunities for these package transfers,
thus increasing the number of composite variables in
the formulation.

We begin by setting the ramp transfer volume
limit to 15% of the inbound aircraft route’s capac-
ity. The reduction in the number of composite vari-
ables enables us to find the optimal integer solutions.
This allows us to examine the effect of allowing a
greater number of aircraft to transfer packages at a
given location, thereby increasing the complexity of
interactions between aircraft routes. We are primarily
interested in the effect of the complexity of compos-
ite variables on the bounds provided by CVF’s linear
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Table 2 CVF Solution Varying Maximum Number of Aircraft Routes Allowed in Ramp Transfer Composites

Maximum Number of Aircraft Routes in Ramp Transfer

0 2 3 4

Composites Single route 7�237 7�237 7�237 7�237
Multiroute 24�078 24�078 24�078 24�078
Ramp transfer 0 12�287 28�462 36�092
Ferry routes 9�700 9�700 9�700 9�700

Problem size Columns 38�838 53�198 69�373 77�003
Rows 1�064 1�064 1�064 1�064
Nonzeroes 244�090 397�484 667�533 827�064

Objective value LP relaxation 1�65048 1�62357 1�62158 1�62158
($M) First integer 1�65518 1�64008 1�63468 1�63601

Optimal integer 1�65351 1�62766 1�62586 1�62586
LP-IP gap 0�0018 0�0025 0�0026 0�0026

Run time LP relaxation 44�66 49�38 102�29 105�94
(sec) Optimal integer 2�320 4�928 11�817 6�753

programming relaxation, the quality of the solution,
and the run time of the model.

Table 2 shows the effect of varying the maximum
number of aircraft routes allowed in each ramp trans-
fer composite from no ramp transfers to those involv-
ing four aircraft. The objective function value of the
best integer solution is reduced by a total of 1.56%
when we introduce the two-aircraft route ramp trans-
fers and by a total of 1.67% when we use three-aircraft
route ramp transfer composites. Note that the addi-
tion of four-route ramp transfers improves neither the
LP relaxation nor the best lower bound. Finally, notice
the behavior of the LP-IP gap. When ramp transfers
are included, the gap jumps from 0.18% to 0.25%, but
building more complex ramp transfer variables has
little additional effect on the gap.

We next examine the effect of the aircraft bal-
ance constraints. As noted in §2, these constraints
propagate fractionality throughout the network. This
fractionality would otherwise be localized to a sin-
gle aircraft route. Thus, the presence of these balance
constraints will likely worsen the bounds provided
by the linear programming relaxation. This type of
constraint is common to many transportation network
design problems where both the commodities and the
units of capacity flow through the network. Using the
composite set without ramp transfers, we run CVF
with and without the aircraft balance requirement at
gateway locations. We continue to enforce balance at

the hubs; that is, the number of planes of a given air-
craft type arriving to a hub’s sort must be offset by
the same number of planes of that type departing the
hub following the sort.

Comparing the solutions in Table 3 leads to three
key observations. First, balancing the design vari-
ables is detrimental to run time. Second, without
balance, the LP relaxation provides a much tighter
bound on the optimal integer solution, though the
gap found with balance is still very tight. Third, with-
out balance, CVF produces a solution with signifi-
cantly lower cost (almost $76 thousand per day, or
a reduction of 4.59%). If aircraft used in the Next
Day Air (i.e., overnight) network can be repositioned
through clever construction of aircraft routes during
daytime operations, we might be able to realize a por-

Table 3 CVF Solution with and Without Gateway Balance

With Balance Without Balance

Composites Single route 7�237 7�237
Multiroute 24�078 24�078

Problem size Columns 26�525 29�216
Rows 909 434
Nonzeroes 205�170 174�208

Objective value LP relaxation 1�65120 1�57725
($M) First integer 1�65906 1�58839

Optimal integer 1�65434 1�57843
LP-IP gap 0�0019 0�00075

Run time LP relaxation 27�23 18�46
(sec.) Optimal integer 1�188 121�09
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tion of these NDA operating cost savings. Thus, a
natural, and likely profitable, extension to CVF is its
application to the combined overnight/daytime net-
work design problem.

Finally, we apply CVF with the full set of compos-
ites (see Table 4), which includes ramp transfers with
a maximum transfer of 50% of the inbound plane’s
capacity, as UPS planners specify. With the nightly
operating cost of the Next Day Air network in the
millions of dollars, each percentage point translates
to significant savings. The 6.96% reduction in operat-
ing cost translates to more than $20 million annually.
The more significant reduction comes in the number
of aircraft and, therefore, the total ownership cost.
The 10.74% reduction corresponds to CVF using 16
fewer aircraft than the plan generated by the UPS
planners. With the cost of a single airframe in the
neighborhood of one hundred million dollars—take
UPS’s recent purchase of 60 Airbus A300-600 aircraft
for $6 billion—avoiding or deferring the cost of a sin-
gle aircraft yields significant savings.

The gaps shown in the table are defined as fol-
lows: “Best Bound” is the difference between the best
integer solution and the best lower bound, divided
by the best lower bound, and “LP-IP” is the differ-
ence between the best integer solution and the root
node LP relaxation, divided by the root node LP relax-
ation. These gaps are similar because the best lower

Table 4 CVF Versus Planners’ Solution, with Objective to
Minimize Operating Cost

CVF

Problem size Columns 124,572
Rows 1,117
Nonzeroes 1,492,014

Solution Operating cost 6.96%
(% improvement from Cycle 4.74%
carrier’s solution) Hourly 8.22%

Number of aircraft 10.74%
Aircraft ownership cost 29.24%
Total cost 24.45%

Run time LP relaxation 317.10
(sec.) Best IP 6,324

Optimality gaps Best bound 2.14%
LP-IP 2.14%

bound does not improve significantly in the branch-
and-bound tree. The running time for CVF to obtain
the fifth integer solution, which is the solution we
report in the table, was just over 100 minutes. Thus,
our new formulation strategy allows us to generate
high quality solutions quickly. By allowing the run to
continue, we can search for a better integer solution,
the presence of which is likely, given the tight gaps
found in the earlier computational tests. Conventional
network design approaches were unable to yield an
integer solution for this scenario.

We contrast routes generated manually by the UPS
planners and those generated by CVF. In Figure 5, we
have extracted the aircraft routes of a single fleet type
from the complete solution for all seven fleet types.
The timing requirements, capacities, landing restric-
tions, and aircraft range result in a planning prob-
lem with so many dimensions that a natural way to
manually plan routes is to have the delivery routes
mirror the pickup routes. This is clearly seen in the
planners’ solution. CVF, however, can handle all mod-
eling dimensions and generate a solution that better
allocates aircraft capacity. This is demonstrated in the
asymmetry we see in the CVF routes. In spite of this
asymmetry, CVF ensures that all planes starting from
a given location are balanced by a plane of the same
fleet type landing at that location.

For short-term planning with a fixed aircraft inven-
tory, CVF can be used to redesign the air network for
the peak retail season in November and December
to reduce or eliminate the need to lease temporary
aircraft. For long-range planning, using fewer aircraft
for future service allows the carrier to purchase fewer
new aircraft or to avoid accelerating production under
existing contracts. The savings are potentially enor-
mous, given the cost of new aircraft. Implementation
and use of this model within the UPS Airline began
recently with tremendous success in the first months
of operation. Details of that work are highlighted in a
companion paper (see Armacost et al. 2002).

4. Conclusions
The inherent difficulty of the Express Shipment Ser-
vice Network Design problem and the massive size of
the instances we consider cause conventional network
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Planners’ Solution

Pickup Routes Delivery Routes

Pickup Routes Delivery Routes

Planners’ Solution

CVF Solution

Pickup Routes Delivery RoutesPickup Routes Delivery Routes

Pickup Routes Delivery RoutesPickup Routes Delivery Routes

Figure 5 Comparing Planners’ Routes Versus CVF’s Routes for a Single Fleet Type

design formulations to fail. By removing package
flows as explicit decisions, we construct an equiva-
lent formulation that provides linear programming
relaxations with stronger lower bounds. We further
strengthen our formulation by considering sets of air-
craft routes, called composites, which implicitly repre-
sent package flows and cover the demand of some set
of commodities.

With composite variables, we have tractable formula-
tions for this large-scale planning problem. The poten-
tial impact on a company such as the United Parcel
Service is tremendous. The planning cycle can be
reduced from months to days, the operating cost of
the resulting network reduced by almost 7%, and the
number of required aircraft reduced significantly. This
translates directly to savings in the hundreds of mil-
lions of dollars.

The flexibility of the composite variable approach
allows the model to easily adjust to additional
constraints. Such constraints hurt conventional
formulations, as they simply add complexity to the
formulation. However, they actually help the compos-
ite variable formulation, as these constraints further
reduce the size of the set of composite variables in

the formulation. A very important example of this
is when we want to ensure that commodity flows
are integral, as we did when demand projections are
specified by containers. We can handle this easily in
our construction of the composite variable set, but
this integrality requirement would make the already
intractable conventional network design formulation,
ESSND, even more difficult to solve.

While the general applicability of composite vari-
able formulation is not completely known, the the-
oretical basis and utility to the large-scale planning
problem faced by UPS is clear. The potential of com-
posite variable formulations can be seen in a broader
set of problems. Exploring a combined Next Day
Air and Second Day Air problem will allow the
UPS planners to consider both overnight and day-
time operations simultaneously. Further, the result-
ing dual information from the composite variable for-
mulation may provide a basis for adjusting a key
input to this planning problem: the gateway-to-hub
assignments for commodities. In the passenger air-
line industry, composite variable formulations can be
applied to the problem of determining fleet assign-
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ments and origin-destination passenger flows simul-
taneously (see Barnhart et al. 2000).

In the more general setting of network design and
fixed-charge problems, composite variable formula-
tions can be applied to core problems such as the pure
fixed-charge transportation problem (PFCTP). This
problem provides a starting point for determining the
classes of problems to which composite variable for-
mulations apply, for developing generalized compos-
ite variable approaches, and for efficiently handling
large numbers of decision variables through either
implicit or explicit column generation.

Acknowledgments
The authors appreciate the contributions of the three anonymous
referees whose insightful comments strengthened this paper.

References
Agrawal, A., P. Klein, R. Ravi. 1995. When trees collide: An approx-

imation algorithm for the generalized Steiner problem on net-
works. SIAM J. Comput. 24 440–456.

Armacost, A. P., C. Barnhart, K. A. Ware, A. M. Wilson, W. C.
DuPuy. 2002. Planning the United Parcel Serivce air network.
Forthcoming, Interfaces.

Barahona, F. 1996. Network design using cut inequalities. SIAM J.
Optim. 6 823–837.

Barnhart, C., R. R. Schneur. 1996. Air network design for express
shipment service. Oper. Res. 44 852–863.
, A. Farahat, M. Lohatepanotot. 2000. Extending fleet
assignment models and algorithms. Working paper, Opera-
tions Research Center, Massachusetts Institute of Technology,
Cambridge, MA.

Bertsimas D., C. P. Teo. 1998. From valid inequalities to heuristics:
A unified view of primal-dual approximation algorithms in
covering problems. Oper. Res. 46 503–514.

Bienstock, D., O. Günlük. 1995. Computational experience with a
difficult mixed-integer multicommodity flow problem. Math.
Programming 68 213–237.
, . 1996. Capacitated network design—Polyhedral struc-
ture and computation. INFORMS J. Comput. 8 243–259.
, S. Chopra, O. Günlük, C. Y. Tsai. 1998. Minimum cost capacity
installation for multicommodity networks. Math. Programming
81 177–199.

Büdenbender, K., T. Grünert, H-J. Sebastian. 2000. A hybrid tabu
search/branch-and-bound algorithm for the direct flight net-
work design problem. Transportation Sci. 34 364–380.

Chopra, S., L. Gilboa, S. T. Sastry. 1998. Source sink flows with
capacity installation in batches. Discrete Appl. Math. 85 165–192.

Crainic, T. G. 2000. Service network design in freight transportation.
Eur. J. Oper. Res. 122 272–288.

Crowder, H., E. L. Johnson, M. W. Padberg. 1983. Soving large-scale
zero-one linear programming problems. Oper. Res. 31 803–834.

Gabow, H. N., M. X. Goemans, D. P. Williamson. 1998. An Efficient
approximation algorithm for the survivable network design
problem. Math. Programming 82 13–40.

Gendron, B., T. G. Crainic, A. Frangioni. 1999. Multicommodity
capacitated network design. B. Sanso, P. Soriano, eds. Telecom-
munications Network Planning. Kluwer Academic Publishers,
Dordrecht, The Netherlands. 1–19.

Goemans, M. X., D. J. Bertsimas. 1993. Survivable networks, lin-
ear programming relaxations and the parsimonious property.
Math. Programming 60 145–166.
, D. P. Williamson. 1995. A general approximation technique
for constrained forest problems. SIAM J. Comput. 24 296–317.

Grünert, T., H. J. Sebastian. 2000. Planning models for long-haul
operations of postal and express shipment companies. Eur. J.
Oper. Res. 122 289–309.

Günlük, O. 1999. A branch-and-cut algorithm for capacitated net-
work design problems. Math. Programming 86 17–39.

Hochbaum, D. S., J. S. Naor. 1996. Approximation algorithms for
network design problems on bounded subsets. J. Algorithms 21
403–414.

ILOG. 1999. CPLEX 6.5 User’s Manual. ILOG, Inc., Incline Village,
NV.

Jain, K. 1998. A factor 2 approximation algorithm for the gener-
alized Steiner network problem. Proc. 39th Annual Sympos. on
Foundations of Computer Science (FOCS ’98).

Karger, D. R. 1999. Random sampling in cut, flow, and network
design problems. Math. Oper. Res. 24 383–413.

Kim, D., C. Barnhart, K. Ware, G. Reinhardt. 1999 Multimodal
express package delivery: A service network design applica-
tion. Transportation Sci. 33 391–407.

Kuby, M., R. Gray. 1993. The hub network design problem with
stopovers and feeders: The case of Federal Express. Transporta-
tion Res. A: Policy and Practice 27A 1–12.

Magnanti, T. L., P. Mirchandani. 1993. Shortest paths, single origin-
destination network design and associated polyhedra. Net-
works 23 103–121.
, R. T. Wong. 1984. Network design and transporation plan-
ning: Models and algorithms. Transportation Sci. 18 1–55.
, P. Mirchandani, R. Vachani. 1993. The convex hull of two core
capacitated network design problems. Math. Programming 26
233–250.
, , . 1995. Modeling and solving the two-facility
capacitated network loading problem. Oper. Res. 43 142–157.

Minoux, M. 1989. Network synthesis and optimum network design
problems: Models, solution methods and applications. Net-
works 19 313–360.

Padberg, M. W., T. J. Van Roy, L. A. Wolsey. 1985. Valid linear
inequalities for fixed charge problems. Oper. Res. 33 842–861.

Pochet, Y., L. A. Wolsey. 1995. Integer knapsack and flow covers
with divisible coefficients: Polyhedra, optimization, and sepa-
ration. Discrete Appl. Math. 59 57–74.

Stallaert, J. 2000. Valid inequalities and separation for capacitated
fixed charge flow problems. Discrete Appl. Math. 98 265–274.

Transportation Science/Vol. 36, No. 1, February 2002 19



ARMACOST, BARNHART, AND WARE
Formulations for Service Network Design

Standard and Poor’s. 2000. Commercial transportation industry sur-
vey. February.

Van Roy, T. J., L. A. Wolsey. 1985. Valid inequalities and separation
for uncapacitated fixed charge networks. Oper. Res. Letters 4
105–112.

Williamson, D. P., M. X. Goemans, M. Mihail, V. V. Vazirani. 1995. A
primal-dual approximation algorithm for generalized Steiner
network problems. Combinatorica 15 435–454.

Wolsey, L. A. 1975. Faces of linear inequalities in 0-1 variables.
Math. Programming 8 165–178.

Received: November 2000; revision received: August 2001; accepted: September 2001.

20 Transportation Science/Vol. 36, No. 1, February 2002


